Topological Bias and Inconsistency of Maximum Likelihood Using Wrong Models
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Ziheng Yang (1997) presented interesting and surprising results suggesting that maximum
likelihood (ML) using a simple model could do a better job of phylogenetic reconstruction
than ML using the correct model. We believe Yang’s results and others that we present here
can best be understood in terms of bias in the choice of topology resulting from using ML
with an incorrect model.

Yang simulated sequences related by various 4-taxon trees, using the Jukes-Cantor (JC)
model with gamma-distributed site-to-site rate variation (JC+G), and a shape parameter
a = 0.2. He then used ML to reconstruct the phylogeny, assuming either the true, JC+G
model with o = 0.2, or the simpler but false JC model. In repeated simulations, the false
model reconstructed the correct topology more often than the true model did for three of the
five trees Yang tested (namely, trees B, D, and E). With a fourth tree (Yang’s tree A), the two
models performed equally well. On the fifth tree (C), the true model performed dramatically
better. Trees generated randomly by a coalescent process were also reconstructed correctly
more often using the false model. Yang’s results held over a wide range of sequence lengths,
suggesting ML with the true model to be less efficient than ML with the false model. This
brought into question the theorem that ML, using the correct model, is asymptotically most
efficient. Yang suggested one possible explanation for his results: that the proof of asymptotic
efficiency of ML might not apply to the discrimination of nonnested models (e.g., different
topologies).

We put forward here an alternative explanation: that Yang’s results do not reflect an overall
increase in efficiency when using the simpler model of sequence evolution, but rather reflect
comparison of a biased, sometimes inconsistent method (ML with false model) to a nearly
unbiased, consistent method (ML with true model). As we will show, it appears that most of
the trees Yang simulated happen to have topologies favored by the bias of the false model.

Others have previously pointed out that false, oversimplified models cause the number of
substitutions to be underestimated. The undercounting of substitution events occurs at all
distances, but becomes more severe for more divergent sequences. This will lead to under-
estimation of longer pairwise distances relative to shorter distances (Gojobori, Ishii and Nei
1982), and also biased or inconsistent estimation of topology (Felsenstein 1978; Huelsenbeck



and Hillis 1993; Kuhner and Felsenstein 1994; Gaut and Lewis 1995; Swofford, Olsen, Waddell
and Hillis 1996, page 442).

Perhaps the best known instance of this involves parsimony. Parsimony, by neglecting back-
substitutions, also underestimates substitutions more severely with increasing divergence.
Felsenstein noted that maximum parsimony has a topological bias (and inconsistency) in
which long branches attract (LBA). In the so-called “Felsenstein zone” —characterized by trees
with long branches on opposite ends of the internal branch—LBA favors the wrong topology
and parsimony is inconsistent. However, one can also observe an “anti-Felsenstein zone” —
characterized by trees with long branches on the same end of the internal branch—where
LBA favors the correct tree and parsimony generally returns the correct topology more often
than ML (Russo, Takezaki and Nei 1996). Thus, biases can lead to either greater or reduced
efficiency, depending on the particular tree under consideration.

ML can show similar biases if the assumed model of evolution is overly simple (e.g., overly
homogeneous) for a given data set (Kuhner and Felsenstein 1994; Gaut and Lewis 1995).
Like parsimony, ML using an overly simple model, such as Yang’s false model which ignores
rate heterogeneity, will underestimate homoplasy (sharing of character states due to back
replacements or convergence). As one consequence, ML using such a model is biased and
inconsistent for the simple problem of finding the distance between two taxa. This effect can
also lead to an LBA bias, for essentially the same reasons as in parsimony: when the overall
number of substitutions is underestimated, a better fit (higher likelihood for ML, fewer changes
for parsimony) results if shared characters between the taxa on long branches are interpreted
as the result of shared evolution.

Such an effect seems to readily explain the results on Yang’s trees B and C. On tree B, in
which the long branches are joined, the simple model performs better than the true model,
whereas on tree C, in which the long branches do not join, the simple model performs much
worse than the true model. We present in Table 1 additional results that support our inter-
pretation: tree B1, which is similar to tree B except that the long branches do not join, caused
the simple model to perform worse than the true model. Conversely, tree C1, which resembles
tree C except that the long branches join, caused the simple model to perform better.

Moreover, for the other trees on which the simple model performed better (trees D and E),
we present similar trees (D1 and E1) on which it performs worse. Because trees D and E do
not have a unique pair of longest external branches, one cannot directly invoke the LBA bias
to explain Yang’s results on these trees. However, we believe that essentially a single bias
phenomenon is at work in all of the four-taxon trees we have studied. We describe below a
possible connection between LBA and the biases in trees D and E.

Quantitative measures of tree shape bias have been described elsewhere (Kuhner and Felsen-
stein 1994; Huelsenbeck and Kirkpatrick 1996), but those statistics were not intended to be
maximally sensitive to the LBA bias. To further support our claim that bias is responsible for
cases where the simple model outperformed the true model, we introduce a quantitative defini-
tion of topological bias that can detect LBA, based on unresolved trees (i.e., star phylogenies,
including those with different external branch lengths; we also call these star-like trees). When
the correct tree is star-like, if a good, unbiased method is forced to choose a best, resolved (i.e.
binary branching) topology, then the method will have no alternative but to choose at random



Table 1
Accuracy comparison of true and false models on original and modified trees.

PERCENT CORRECT®
TREE NAME?® TREE SPECIFICATION? True model False model

B ((:5,.5),.1, (.6, 1.4)) 72 81
B1 ((.6,.5),.1,(.5,1.4)) 77 74
C ((1,.5),.1,(:2,1.0) 94 63
C1 ((.1,.2),.1,(.5,1.0)) 86 100
D ((.05, 05), 05,(.05,.5)) 98 100
D1 ((.05,.1),.05,(0,.5)) 100 90
E ((.05, .5, .05, (.5,.5)) 78 80
El ((.05, 55), 05, (.5,.45)) 77 68

aTrees B, C, D and E are trees simulated by Yang (1997); B1, C1, D1 and E1 are trees we
feel are similar but will be treated differently by bias.

bExpected branch lengths, grouped according to topology.

“Percent of topology estimates correct using either the true model (JC+G) or the simpler false
model (JC), based on 1000 simulations of sequences 2000 bases long, rounded to the nearest
percent.

from the possible resolved topologies. There is no reason to choose one topology more often
than the others, so in the case of four taxa, each of the three topologies should be chosen in
one-third of the simulations. Thus, for a 4-taxon unresolved tree, we may quantitatively define
the topological bias of a method in favor of any one topology as the fraction of simulations in
which that topology is chosen, minus the expected one-third.

This definition can be extended to resolved trees (such as Yang’s) by applying it to an
unresolved tree that is as similar as possible to the given tree. As a way of defining the most
similar tree, let the “most likely unresolved tree” (MLUT) be the star-like tree that would
be found by simulating infinitely long sequences on the original tree and performing ML tree
reconstruction on these sequences holding the internal branch fixed at length zero, using the
true model for both simulation and reconstruction.

Table 2 shows the biases that result from applying ML using the JC+G and JC models to
reconstruct trees from data generated under JC+G on the MLUTSs of Yang’s trees: tree B0
is the MLUT of tree B, tree CO the MLUT of tree C and so on. A positive bias means that
the original topology was reconstructed more than one-third of the time, indicating a bias in
favor of the original Yang tree.

In each case presented in Table 2, the false model is significantly (p < .01) biased. The
true model is much less biased and its results are consistent with zero bias, except for case
C0, where the true model demonstrates a small but significant LBA bias. The bias of the
false model favors trees B, D and E (positive bias), for which Yang found the false model to
outperform the true model, but disfavors tree C (negative bias), for which Yang found the true
model to be better. The amplitudes of the biases are sufficient to be a believable explanation



Table 2
Bias comparison of true and false models on MLUTs of original trees.

PERCENT BiaAs?

TREE NAME TREE SPECIFICATION True model False model
B0 ((.512,.512),0,(.680, 1.460)) -2 14
Co ((.503,.118),0,(.281, 1.052)) —4 —25
DO ((.0503,.0503), 0, (.0998, .5384)) 1 51
EO ((.0604,.4975),0, (.5347,.5347)) 1 5

2Bias defined as percent of topology estimates “correct” (despite zero internal branch length),
minus 33'/3%. Expected standard deviation based on the 1000 trials is 1.5%.

for the differences found in Table 1.

Strikingly, the bias in the simple model gets progressively worse for longer sequences. For
example, based on 5000 repeated simulations of tree B0, the false model bias goes from 10%
to 19% as the sequence length increases from 2000 to 8000; and it can be shown that in the
limit of infinitely long sequences the false model always returns the LBA topology. Thus, ML
with an over-simple model can be “positively misleading” in the sense of Felsenstein (1978).

A plausible connection between LBA and the bias in trees D and E may be inferred from
the presence of two longest branches in both MLUTs D0 and EO, with the observed bias in the
direction of joining these longest branches. The MLUTSs seem to have allocated some of the
internal branch length of the original tree to the various external branches unequally, so that
the short pairwise distances between taxa are nearly the same as in the original tree. This
makes sense given the smaller confidence interval on the reconstruction of shorter distances
(Bulmer 1991).

To summarize, for each of Yang’s trees that was better reconstructed by the false model, we
could readily find nearby trees that are better reconstructed by the true model. Furthermore,
examination of unresolved trees which are similar to the original trees suggests that use of
the false model leads to biased estimates of topology, sometimes biased in the right direction
(trees B, D and E), sometimes in the wrong direction (tree C), while the true model gives
relatively unbiased estimates.

Yang’s results with the trees generated by a Yule process may also be explainable in terms
of bias, although we have not investigated this directly. Certainly, on trees obeying a strict
molecular clock, long branches must be joined; hence such trees are favored by an LBA bias.
Although Yang’s trees had fluctuations in their branch lengths that caused deviations from
the molecular clock, these trees could still have enough clock-like character to be favored by
LBA.

We expect that with real, contemporaneous, biological sequences, the LBA bias may be
slightly more likely to favor the correct tree than an incorrect tree due to whatever clock-like
tendency evolution may possess. Incorporating a clock-like bias into a model for sequence
evolution could improve our ability to reconstruct the correct tree. This suggests the impor-
tance of research into models that only mildly violate the molecular clock (Thorne, Kishino



and Painter 1998).

Our results raise concerns about the methodology of testing reconstruction methods, since
a biased test-set can cause a biased method to appear to outperform a better, less biased
method, as Yang indeed found. One lesson we take away from our results is that a choice of
trees that seems intuitively fair may not be. The problem of choosing test trees that can be
used to compare biased methods to unbiased ones does not have an obvious, robust solution.
Highly symmetric trees, such as Yang’s tree A (in which all four external branches are of equal
length) would have symmetric MLUTs and should be essentially immune from the LBA bias,
but such trees alone would not suffice to expose all the possible deficiencies in a method.

The bias problem also has consequences for studies of molecular evolution in general. Since
no model can be assumed to be entirely correct for real sequences, trees reconstructed by any
method are likely to be biased in some direction. These biases are systematic and may be
positively misleading—they will not disappear but instead grow stronger with longer sequences,
and can result in consistently high bootstrap values for some incorrect branches. Therefore,
bias may lead to false biological conclusions; overly simple/homogeneous models can cause
rapidly evolving taxa to be confidently but incorrectly grouped.

Obviously, one would like to be sure that reconstructed phylogenetic groupings are not
caused by bias. One approach toward this end would be to show that a grouping is supported
by methods covering a range of biases, where that range is large enough so that it likely
includes zero bias. Thus, one could check for consistency between results with models that
underestimate long distances (such as a model with no rate heterogeneity) and models that
overestimate distances (such as a model with an extremely large amount of rate heterogeneity).
The latter models will reverse the bias, resulting in a “long branches repel” effect; as an
example, we find that the JC+G model with o = 0.04 has a bias of —10% on tree B0 of
Table 2). Unless a branch is supported under both types of models, it should be considered
suspect.
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